Python and Spark for Big Data (PySpark) Training Course

Kurskode

sparkpython

Varighet

21 timer (usually 3 days including breaks)

Krav

  • General programming skills

Audience

  • Developers
  • IT Professionals
  • Data Scientists

Oversikt

Python er et programmeringsspråk på høyt nivå kjent for sin klare syntaks og kodelesbarhet. Spark er en databehandlingsmotor som brukes til spørring, analyse og transformering av big data. PySpark lar brukere grensesnitt Spark med Python .

I denne instruktørledede liveopplæringen vil deltakerne lære hvordan de bruker Python og Spark sammen for å analysere big data når de jobber med praktiske øvelser.

Ved slutten av denne opplæringen vil deltakerne kunne:

  • Lær hvordan du bruker Spark med Python til å analysere Big Data .
  • Arbeidet med øvelser som etterligner omstendighetene i den virkelige verden.
  • Bruk forskjellige verktøy og teknikker for big data-analyse ved bruk av PySpark .

Kursets format

  • Delforelesning, deldiskusjon, øvelser og tung praktisk øvelse

Machine Translated

Kursplan

Introduction

Understanding Big Data

Overview of Spark

Overview of Python

Overview of PySpark

  • Distributing Data Using Resilient Distributed Datasets Framework
  • Distributing Computation Using Spark API Operators

Setting Up Python with Spark

Setting Up PySpark

Using Amazon Web Services (AWS) EC2 Instances for Spark

Setting Up Databricks

Setting Up the AWS EMR Cluster

Learning the Basics of Python Programming

  • Getting Started with Python
  • Using the Jupyter Notebook
  • Using Variables and Simple Data Types
  • Working with Lists
  • Using if Statements
  • Using User Inputs
  • Working with while Loops
  • Implementing Functions
  • Working with Classes
  • Working with Files and Exceptions
  • Working with Projects, Data, and APIs

Learning the Basics of Spark DataFrame

  • Getting Started with Spark DataFrames
  • Implementing Basic Operations with Spark
  • Using Groupby and Aggregate Operations
  • Working with Timestamps and Dates

Working on a Spark DataFrame Project Exercise

Understanding Machine Learning with MLlib

Working with MLlib, Spark, and Python for Machine Learning

Understanding Regressions

  • Learning Linear Regression Theory
  • Implementing a Regression Evaluation Code
  • Working on a Sample Linear Regression Exercise
  • Learning Logistic Regression Theory
  • Implementing a Logistic Regression Code
  • Working on a Sample Logistic Regression Exercise

Understanding Random Forests and Decision Trees

  • Learning Tree Methods Theory
  • Implementing Decision Trees and Random Forest Codes
  • Working on a Sample Random Forest Classification Exercise

Working with K-means Clustering

  • Understanding K-means Clustering Theory
  • Implementing a K-means Clustering Code
  • Working on a Sample Clustering Exercise

Working with Recommender Systems

Implementing Natural Language Processing

  • Understanding Natural Language Processing (NLP)
  • Overview of NLP Tools
  • Working on a Sample NLP Exercise

Streaming with Spark on Python

  • Overview Streaming with Spark
  • Sample Spark Streaming Exercise

Closing Remarks

Testimonials

★★★★★
★★★★★

Related Categories

Course Discounts

Course Discounts Newsletter

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

Some of our clients

is growing fast!

We are looking to expand our presence in Norway!

As a Business Development Manager you will:

  • expand business in Norway
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!